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1 INTRODUCTION 

This report describes the out of order core implemented by team EKA for the EECS 470 term project. We 
have based our core on the P6 micro-architecture. The core has been designed giving priority to 
correctness and performance. To achieve these stringent targets many advanced control and memory 
features have been incorporated into our design. On a baseline 2-way Superscalar system we have 
incorporated, 5-way instruction issue & complete, early tag broadcast (ETB), load-store queue (LSQ), 
adaptive instruction prefetching among other features to extract maximum out of order execution, 
reducing potential stalls. Apart from core features, we had a focused approach for design verification 
which included the development of an automated testing suite for fast and efficient regression analysis. 
  
The following sections explain our core in detail along with the underlying philosophy which directed us 
to choose the particular design over other available options. 

2   DESIGN 

 

Figure 1: Design overview 



2.1 Fetch Stage 

The fetch stage is responsible for receiving instructions from the instruction cache and storing these in 
the instruction buffer. It interacts with the Branch Predictor, Branch Target Buffer and Return Address 
Stack in case of branch instructions to decide the next PC. The stage also pre-decodes the instructions 
into classes corresponding to our multiple Reservation Station banks (explained later), so they can be 
routed accordingly at dispatch. The pre-fetcher is also part of this stage and fetches instructions into the 
cache. In order to obtain a good cycle time we allow only one branch instruction to be fetched per cycle. 
This stage consists of the following modules: 
 

2.1.1 Dual Ported Instruction Cache 

A dual ported I-cache allows the fetch to submit requests for two non-aligned consecutive PCs in one 
cycle. This improvement feature reduces fetch related stalls in the pipeline.  
  

2.1.2 Return Address Stack 

The RAS is a 32 entry LIFO structure (stack) which will push return PC into the stack when it sees a call 
instruction and pops it when it sees a return instruction. We maintain two such stacks, one which 
speculatively feeds the fetch stage and the other that is updated only at retire. In case of exceptions the 
retire stack copy is copied into the fetch copy.  
  

2.1.3 Branch Table Buffer 

The branch table buffer (BTB) is a 32 entry circular array and is looked up using PC and simultaneously 
handle two retire requests. When full, the BTB overwrites the oldest entry. 
  

2.1.4 Branch Predictor 

The branch predictor (BP) is implemented as a 32 entry array with 2-bit saturating counters that’s 
indexes with the last 5 bits of the PC. It can service two branches retiring and fetching simultaneously. 
The BP maintains two copies of the branch history table (BHT) – a speculative fetch copy and a final 
retire copy. In case of exceptions the fetch copy is updated with the retire copy. As per our analysis 
(detailed in sections below) a bi-modal BP gave a better performance over the g-share predictor and 
hence we stuck to this design. 
  

2.1.5 Instruction Buffer 

The instruction buffer is implemented as an 8 entry circular queue fed by the fetch stage. Full and empty 
signals help fetch and dispatch stages decide how many instructions to process. 
  

2.1.6 Instruction Pre-fetcher 

We implemented an adaptive window based instruction pre-fetcher (IPF) which is triggered in case of 
a. I-cache misses 
b. Last pre-fetched PC falls within a pre-fetch window size of the current PC being fetched 
c. Last pre-fetched PC falls beyond twice the window size of the current PC being fetched. 
 
With each trigger, new pre-fetch PC is decided so as to consistently maintain a window of 16 
consecutive instructions in the I-cache. As soon as the pre-fetcher is triggered, requests for 16 next 



instructions are sent to the memory, two each for the next 8 cycles. The outstanding pre-fetch requests 
are maintained in an MSHR. From our simulations, a prefetching window of 16 instructions with an 16-
entry MSHR provided the optimal performance. Pre-fetch requests were given the least priority in case 
of contention with loads or stores to memory.  In the analysis section we provide a detailed analysis of 
the different approaches we tried.  
 

2.2 Dispatch Stage 

 
The dispatch stage is responsible for allocating instructions to the various structures taking into account 
structural hazards in these units (such as reservation station, map table etc.). Depending on available 
slots the unit may send two, one or none instructions. We have implemented two parallel decoders to 
decode instructions. The components of the stage are as follows: 
  

2.2.1 Reorder Buffer 

The reorder buffer (ROB) is implemented as a 32 entry circular queue who's tail pointer is controlled by 
the dispatch stage and head is controlled by the retire stage. Each entry stores comprehensible 
information about the instruction such as decoded register information, completed execution bits, 
predicted branch direction and targets for branches and exception bits. 
  

2.2.2 Map Table 

The map table is a simple array structure indexed by the register number. It can be addressed by two 
instructions every cycle and is used to implement register renaming in the out of order core. 
  

2.2.3 Reservation Stations 

Our core consists of four separate reservation stations (RS) with each station dedicated to a separate 
class of instructions, ALU (8 entry), Mult (4 entry), branch and jump (4 entry), load and store (4 entry). 
RS entry allocation is done using parallel priority selectors. The split nature of the RS allows for as many 
as five different instructions to be issued in the same cycle. Further, five CDBs ensure that each RS bank 
can simultaneously ‘snarf’ the execution results and update the dependent instructions, thus eliminating 
any need for buffering results.  
  

2.3 Issue Stage 

Instructions are issued from the reservation stations using pseudo-random priority selectors. The 
randomness ensures that instructions do not stagnate in the RS. 
  

2.4 Execution Stage 

 
There are 5 functional units in our pipeline: two ALUs, one address calculating unit, one branch handling 
unit and one 4-stage multiplying unit each connected to an independent CDB. ETB from the execution 
units enables dependent instructions to issue in same cycle as the completing instruction that feeds the 
results. 
 
 



2.5 Data Memory Interface 

The data memory interface is designed such that 

a. Loads and stores calculate address out of order as soon as the operands are ready. 

b.  A load is eligible to go to memory as soon as its address is ready and 

i. No store ahead of it has unresolved address, and 

ii. It did not get a forwarded value from any store ahead of it. 

c. A store is eligible to go to memory as soon as its address is resolved and it is at ROB head. 

d. Processor does not stall on a write miss with stores being buffered until memory unit is 
available. 

e. Processor does not stall on a data read miss in cache with dcache controller enabled to handle 
multiple outstanding load misses in cache. The number of load misses that can be handled being 
parameterized. 

f. Fetch misses are given highest priority followed by load requests, store requests and finally 
instruction prefetch requests.  

To achieve each of these goals we have implemented the following components 

2.5.1 Load Queue 

Houses load instructions from dispatch till they broadcast value on CDB after which they are deleted. It 
sends requests to and receives responses from the d-cache controller which in turn talks to memory. 
 

2.5.2 Store Queue 

Houses store instructions from dispatch till they are sent to memory.  It also calculates dependency 
information for a load and forwards a value to a load with address match. Memory requests are send 
when available. Also, when a store is sent to memory the store address is broadcasted to D-cache 
controller to disable any loads with address match in MSHR from writing to cache once they get their 
value from memory. 
 

2.5.3 Post retirement store buffer 

This is implemented as a part of the store queue. Retired stores which are waiting for memory, wait in 
the store queue. We implement this by maintaining three pointers head, retire head and tail. Entries 
between head and ‘retire head’ are retired from the ROB and wait on memory and those between retire 
head and tail are not retired. Stores that are retired from the pipeline can still forward values to younger 
loads. Since even after a halt instruction is retired, there could be stores not yet sent to memory, halt is 
enforced only when this post retirement store buffer is empty. 
 

2.5.4 Data Cache Controller 

The data cache controller receives requests from the load queue. D-cache misses are saved in an 8-entry 
MSHR and are sent to memory as soon as it is available. When a load is serviced, D-cache controller 
broadcasts the value to the corresponding load queue entry  
 
 



2.6 Complete Stage 

Since we have implemented ETB for ALU, branch and multiply instructions, the functionality of this stage 
is satisfied in the earlier stage itself. 
  

2.7 Retire Stage 

Our core can retire two completed instructions from the head of the ROB simultaneously. Exceptions are 
also handled in this stage. In case of a branch miss-prediction, a special reset signal is sent which flushes 
the ROB, Instruction Buffer, all RS entries and execution units, the map table, and LQ. SQ is flushed 
differently since retired stores that are still not sent out to memory have to be handled. The BTB is also 
updated with the correct target. We also handle exceptions caused by halt and illegal instructions in 
retire. Retiring calls and returns send special signals to the RAS while retiring conditional branches 
updates the branch predictor with information regarding the actual and predicted directions. 
  

3 TESTING STRATEGY 

 
We followed a well-defined and phased approach for testing our out of order core. These phases are 
mentioned below: 
  

3.1 Unit Testing 

Comprehensive test cases were enumerated during the design phase and tasks were added in the 
module level test-benches to generate dumps of the internal stage of each module along with inputs 
and outputs. The same was done for the synthesized version also.  
  

3.2 Incremental Integration Testing 

We favored an incremental integration vs. a ‘Big Bang’ combination approach since it would be easier to 
locate and fix bugs arising due to incorrect interactions between modules. While this required an extra 
effort, we found the incremental approach to outweigh the cons. 
  

3.3 Integration Testing with Automated Test Suite 

We developed an automated test suite to compare the core output with the llvsimp or ‘gold’ core. The 
suite is designed to pick test programs from a given directory, convert them to assembly and run each 
for the gold core and our test core. The tool was extensively used to do a regression testing after every 
bug fix. 
 

3.4 Variable memory latency Test 

We tested our core both using fixed latency and variable latency per execution cycle. The latter was 
accomplished by using the mem_random.v file shared with us by the course GSIs. 
  

3.5 Testing with Decaf 

The decaf compiler was used to convert some sample programs such as merge sort into assembly which 
were then submitted to the test suite for regression test. 
 



3.6 Hybrid Compilation 

We generated make files to selectively run synthesized modules along with behavioral code so as to 
pinpoint synthesis errors. 
 

4 PERFORMANCE SUMMARY 

 
Our processor was optimized to achieve a fair balance of performance and cycle latency. On a whole, 
the publicly available test benches performed well and the average IPC 0.732. The cycle latency we 
achieved after optimization was 9ns. We found that features like instruction prefetching, ETB, multiple 
RS banks and LSQ, improved the performance significantly. While some other features like dual ported 
cache, gshare branch prediction didn't contribute too much.  
 
Figure 2 shows the contribution to performance gain by some important features over the baseline out 
of order, 2-way superscalar CPU (with memory operations handled at retire and no branch prediction 
support). 
 

 
Figure 2: IPC improvements seen with different optional features over the baseline. 
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5 ANALYSIS 

 
The following sections provide a detailed analysis of variations in program behavior with feature 
additions. 
 

5.1 Branch Prediction 

We initially implemented a gshare branch predictor and observed that it performed worse on our 
benchmarks as compared to a simple predictor with a local branch history table prompting us to choose 
the latter in our final design. We analyzed the gshare with a Global History Register of 3 and 5. Most of 
the benchmarks available have independent branches or loops with a small trip count. For example, 
with a 3 bit GHR, you need a warm up time of 8 out of 16 iterations for a regular loop. A local 2 bit 
saturating counter (initialized to 10) on the other hand mispredicts only once. Figure 3 shows a 
comparison of the Gshare vs bimodal vs always taken vs always not taken branch prediction. We 
observe that the bimodal predictor is consistently giving us the best predictions. Also, we observed that 
initializing our saturating counter to 10 gave an average performance gain of 20%. 
 

 
Figure 3: Branch Predictor Analysis for different benchmarks 
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Btest1 and btest2 showed no improvement with any kind of branch support due to non-repetitive, 
unpredictable branches. On the other hand, regular loops in other programs benefitted considerably. 
 

5.2 Return Address Stack 

We observed that a simple RAS stack maintained by the fetch stage gave us marginal performance gain 
on the benchmarks due to speculative pushes and pops effected on a speculated control path, which 
rendered the RAS useless. In order to improve this gain, we implemented the speculation aware RAS. 
This change gave us a good performance gain (around 25% on objsort) without appearing on the critical 
path. 
 

5.3 Multi - banked Reservation Station 

The selection of a multi-banked design which leads to more complex hardware would be validated if 
more than 2 instructions were issued in a cycle often. We conducted experiments to verify this. The 
issue frequencies for three benchmarks are shown in Figure 4. Many benchmark programs issued 3 
instructions/cycle. Complex programs such as fib_rec which contained a varied class of operations were 
able to extract most benefit from the design. We also observed that certain programs with a limited set 
of instruction classes like btest1 didn't benefit from this design. 
 

   
Figure 4:  Issue Rate Analysis 

 
In conclusion, the selection of a multi-banked RS design was a good decision which helped increase 
performance of many of our test programs. 
 

5.4 Adaptive Pre-fetcher 

Figure 5 presents the CPIs for three test systems; first with no pre-fetching, second with next line pre-
fetching and third with our adaptive pre-fetching.  Btest1 and Btest2 are the biggest winners with our 
pre-fetcher. Constant jumping of PC seen in btest1 and btest2 ensures that maximum benefit is seen 
only with our aggressive adaptive pre-fetcher. Having a 16-entry MSHR and employing a prefetching 
window of 16 instructions gives the pre-fetcher enough resources to fetch up to a maximum of 32 
instructions simultaneously. Our memory controller gives pre-fetch requests last priority behind 
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instruction cache misses, load misses and store misses in that order. This ensures that pre-fetch 
requests never interfere with program flow. On an average, adaptive pre-fetcher improves CPI by 51.2% 
over no prefetching and by 32% over next line prefetching. 
 

 
Figure 5: Prefetching analysis 

 

5.5 Load/Store queue 

We see here that in benchmarks like copy where every load was preceded in dispatch order by a store 
to the same address, our store-load forwarding led to no loads being sent to memory. From Figure 6, we 
can see that other benchmarks too benefit from this as the number of loads send to memory is 
considerably reduced. 

 
Figure 6: Load Store Forwarding Analysis 
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5.6  Component sizing 

Another experiment we did was to gauge the reason for stalls in the pipeline due to structural hazards. 
This analysis was used to finalize the sizes of the components in our pipeline to an optimal number. 
Figure 7 gives us an idea of the structural hazards that contributed to stalls in our pipeline, discounting 
stalls because of instruction fetch misses. 

 
Figure 7: Structural Hazard Analysis 

Based on this analysis, and keeping in mind latency of each cycle, we narrowed down our RS bank sizes 
to 8 for the ALU instructions and 4 for the other classes. LQ and SQ sizes were fixed to 8 each.  
 

6 Involvement 

Shaizeen Aga (20%): Ins Buf, ROB, Dispatch, LSQ, D$ Controller, Prefetcher, Post retirement store buffer 
Aasheesh Kolli (20%): RS, Pseudo random issue and dispatch, ETB, D$ Controller, Prefetcher, I$ 
Rakesh Nambiar (20%): BTB, Speculative RAS, RS, Execute units, Regression suite 
Shruti Padmanabha (20%): Fetch stage, MT, BP, Speculative RAS, ETB, Baseline OoO 
Maheshwarr Sathiamoorthy  (20%): gshare BP, Speculative RAS, BTB, RS, Execute units, ETB 
 

7 Conclusion 

We have successfully implemented an out of order core based on the P6 architecture.  Our performance 
and correctness analysis shows that most of our design choices have led to superior performance while 
at the same time ensuring execution precision. Specifically use of multi-bank reservation stations 
reduced our CPI in many programs by supporting up to 5-wide issues and completes. Our adaptive pre-
fetcher successfully reduced the instruction miss rate while use of the RAS and BI-Modal branch 
predictor improved CPI for branch heavy programs. The core was able to hide memory latencies by 
implementing multiple outstanding load missed past pending stores. 
 

Finally, we express our gratitude to Prof. Wenisch, Drew and Faissal for their support and guidance 

throughout the course of the project.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MULT_FULL

ADDR_FULL

BR_FULL

ALU_FULL

SQ_FULL

LQ_FULL

ROB_FULL


