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Abstract

Making parallel machines programmable is paramount to exposing
and eventual harnessing of the performance of multiple cores.
Memory consistency model plays an important role is deciding how
programmable a parallel machine is, for it affects the assumptions a
programmer can make. Sequential consistency is arguably the most
intuitive memory model but is rarely implemented in practice owing
to the concomitant performance costs.
In this paper we build upon previous work[12] which relaxes

constraints imposed by Sequential Consistency by dynamically
classifying memory accesses based on the kind of data that is
accessed. While in [12] the authors classify memory accesses at
page level, we leverage existing cache coherence infrastructure and
by adding some more state information to the directory in a cache
coherence protocol, classify memory accesses at cache block level.
We show with our simulations on PARSEC[3] and SPLASH2[13]
benchmarks that Reactive SC is successful in closing the
performance gap between SC and TSO. Reactive SC is within the
vicinity of 1.1% to 6.5% of TSO and performs about 1.9% to 5.4%
better than page level implementation.

General Terms Design, Language, Performance

Keywords Memory Consistency, Parallel Programming, Sequential
Consistency

1. Introduction

The advent of chip multiprocessors and their pervasiveness has led
more and more programmers to use parallel programming to
harness underlying cores for performance. One of the biggest
luxuries a programmer gives up on moving from a sequential to
parallel programming is the ability to reason in clear terms about the
order in which instructions by multiple processors get executed.
This ”happens-before” relationship is implicitly guaranteed in a
sequential program by the program order that the programmer has
specified. To help programmer reason about this order, a formal
contract or memory consistency model is defined. This dictates what
value ’a read’ by a processor returns. A consistency model lays
down constraints on the completion order for memory accesses by
each processor.
Several consistency models have been proposed that vary in the

constraints they enforce [2, 6, 9]. Most uniprocessor hardware and
software optimizations which overlap and/or reorder memory
operations have to be compromised in order to abide by these
constraints [1]. Of the consistency models proposed in literature,
Sequential consistency is considered the most intuitive given it is a
logical extension from uniprocessor to multiprocessor.
Unfortunately this model comes with an expensive performance
cost, because most modern hardware optimizations such as
reordering, overlapping, and coalescing violating this model.
Because of this, manufacturers chose to support more relaxed
memory consistency models [1] which allow these memory
optimizations.

There has been considerable effort in the research community
towards the design of efficient SC hardware [4, 5, 7, 11]. For
example, in-window speculation proposed by Gharachorloo et al.
[7] allows memory operations to be reordered before they are retired
from the ROB. This technique effectively delineates coherence
activity from the imposition of consistency constraints; however,
given that the store buffer still needs to be drained for a load to
retire, in window speculation alone does not suffice for an efficient
SC design. Aggressive proposals which use out-of-window
speculation have also been proposed [7], but have concomitant
complex recovery mechanisms which have not been realized in
practical hardware implementations.
In this paper we build upon previous work [12] which argues

that we need not treat all memory locations the same and thus
impose the same constraints on them uniformly. Memory operations
to locations which are private to a processor can be freely reordered
or overlapped without any constraints, while operations to locations
which are not private need to be subject to the constraints imposed
by the memory consistency model under consideration. While in
[12] memory locations are classified at page level, we demonstrate
that much performance increase is left untapped by this
implementation and that we can further exploit this property at a
finer granularity by classifying memory locations at the cache block
level. To do this, we have augmented the directory in the cache
coherence protocol to keep track of the classification of memory
locations and we use this classification to effectively relax the
consistency constraints. We call our proposal Reactive SC. Our
results show that Reactive SC delivers performance close to TSO
and is thus effective in closing the performance gap between SC
hardware and TSO hardware.
The contributions of this work are as follows:

• We show that classification of memory operations at page level
to relax memory consistency constraints leaves much room for
improvement which can be further exploited by alternatively
classifying memory operations at cache block level.

• We present in this paper a protocol to classify memory
operations at cache block level and its implementation, which
we call Reactive SC.

• Simulation results demonstrate that the proposed solution
Reactive SC closes the performance gap between SC and TSO.

This paper is organized as follows. Section 2 presents background
and describes the key insight along with the page level
implementation as proposed in [12]. Section 3 presents Reactive SC
and describes complete architecture for it. Section 4 evaluates it.
Section 5 presents our conclusions.

2. Background and Motivation

In this section we describe the technique employed in [12] and
highlight the untapped opportunity to obtain better performance for
the proposed SC design by decreasing the granularity of
classification from page level to cache block level.
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2.1 Sequential Consistency: Basics

Multicore chips that support shared memory accesses allow multiple
threads to concurrently read and write to a single shared address
space. Most out-of-order processors employ optimizations like
non-fifo store buffers and non-blocking reads, which allow loads
and stores to complete out of order with respect to each other,
effectively hiding memory latency. These techniques work well for
uniprocessors, but for multicore processors that support shared
memory accesses and local caches an inconsistent view of memory
can be propagated across cores. Memory models specify the
allowed behavior of multithreaded programs with shared memory
by imposing restrictions on the order of shared memory accesses
initiated by each processor.
Sequential consistency, which is by far the most intuitive memory

model, specifies that the system must appear to execute all loads and
stores to all memory locations in a global order that respects the
program order of each thread. This mandates following four ordering
constraints:

• Load ⇒ Load order: Loads should complete before letting any
subsequent loads complete. A load is considered complete when
the return value is bound and cannot be modified by any other
write operation.

• Store ⇒ Store order: Stores should complete before letting any
subsequent stores complete. A store is considered complete when
the value written is visible to all processors.

• Load ⇒ Store order: Preserve ordering between a load and a
subsequent store.

• Store ⇒ Load order: Preserve ordering between a store and a
subsequent load.

It is the imposing of these constraints that limit the performance
of SC as compared to other memory models which relax one or more
of these constraints.

2.2 Key insight: Classification of Memory Accesses

The key insight of the authors in [12] is that a memory access to
a location which is private to a given thread can be successfully
reordered with respect to a memory access to a location which is
shared amongst multiple threads without violating SC; it is only
for memory operations to shared data that ordering constraints need
to be imposed. Most hardware designs to date have ignored this
opportunity and have uniformly enforced memory model constraints
upon all memory operations. If the runtime system can successfully
classify memory accesses as to either private or shared data we could
relax ordering constraints accordingly.
We can let the processor reorder an access if we can guarantee

that there will be no conflicting access by another thread that could
observe or alter the result of this access. Such an access is classified
as safe while the remaining accesses are classified as unsafe. It is
clear that all accesses to thread local data which is never accessed by
any other thread are safe accesses.
Memory accesses can be classified as follows to ascertain at run

time if an access is safe or not. A memory operation by a thread is:

• Private if it accesses a memory location that has only been
accessed by that thread up to that point in the execution.

• Shared read-only if it accesses a memory location that has been
read by multiple threads but not has been written since
initialization.

• Shared read-write if it is accesses a location that has been
accessed by multiple threads and least one of those accesses is a
write.

It is clear that private and shared read only accesses are safe while
shared read write accesses are unsafe. Thus, from the processors
perspective, we now have four types of memory accesses:
Safe loads, Unsafe loads, Safe stores, Unsafe stores.
Along with these types, we will have sixteen different memory

orderings (instead of four) but we only need to impose memory
model ordering constraints between an unsafe [Load, Store] access
and another unsafe [Load, Store] access and can relax the remaining
twelve ordering constraints which have any access classified as safe
[Load, Store]. If the proportion of safe accesses in an application is
high, our design results in the relaxation of ordering constraints on a
very large amount of the memory operations.

2.3 Untapped Opportunity
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Figure 1:Memory access type classification. Left bar is for cache-
level, while the right for page-level

Figure 1 shows the access type distribution of memory accesses
in the executions of several programs. The classification is based on
observing the behavior of the parallel section of the program (i.e.
after main thread spawns the first thread) and tracking the types of
memory accesses at page and cache block level. These results were
obtained using PIN [10]. It can be seen from this graph that the
amount of safe memory accesses when classified at cache block level
is considerably greater than when memory accesses are classified
at page level. This suggests an untapped opportunity at page level
classification, wherein classification done at cache block level can
achieve more safe accesses and could get better performance. It was
this opportunity that we explored in our work.

3. Proposed Solution: Reactive SC

In this section, we describe our proposed solution of Reactive SC,
the design and implementation of protocols employed, along with
hardware modifications that are warranted.

3.1 Overview

Reactive SC classifies memory accesses on cache block granularity
into safe or unsafe. While in [12] the authors employ the page table
and TLB to classify accesses at page granularity, we leverage the
directory in the cache coherence protocol to keep track of
classification information. Since the coherence state machine uses
the directory to keep track of coherence state for all cache blocks
actively used by the processors, we add a few more state bits to each
directory entry to hold the current classification of cache block.

3.2 Directory Protocol

Figure 3 shows the directory entry augmented to keep track of
classification information. We keep the classification state machine
separate from coherence state machine and they act as separate state
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S_RW

[StatReq,GetS] /
Unsafe

P_S
StatAck, brdcst_stat=1 / broadcast Unsafe

StatAck, brdcst_stat=0 / Unsafe to req

[StatReq,GetS] /
--, brdcst_stat = 1

S_RO
StatReq /

broadcast Dwngrd

GetS / SafeE

P_RO

StatReq, req!=owner /
Dwngrd owner

GetS,req!=owner / SafeE

GetS,req=owner /
SafeE

P_RW

StatReq, req=owner / Safe [StatReq,GetS],
req!=owner/

Dwngrd

[StatReq,GetS], 
req=owner / Safe

Untouched

GetS / SafeE

StatReq / Safe

Figure 2: Directory controller state machine
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Figure 3: Augmented Directory Entry

machines running in parallel. Thus apart from coherence protocol
state we add the following state to each directory entry:

• Read only: Single bit classifying entry as being only read so far.

• Shared: Single bit classifying entry as being shared by multiple
processors. If the read only bit is set then cache block is Shared
read only, otherwise the cache block is shared read write

• Owner ID: Bits keep track of current owner of the cache block.
An owner of the cache block is the first processor to every access
the cache block. Any subsequent access by any other processor
will nullify this field. Thus owner of the cache block in the
classification state machine is different from the concept of owner
in a coherence state machine.

Figure 2 shows the directory controller state machine for
classification. Our design tries to minimize the network messages
injected by observing cache coherence messages and initiating state
transitions. A cache block not being used by any processor is not
present in the directory and is thus untouched. A Load by any
processor will lead to a GetS cache coherence message sent to the
directory. On observing this, the classification state transitions to
P RO (or Private read-only) state and the Owner ID field is set
accordingly. The directory replies to the processor that the current
classification for cache block is safe exclusive. We differentiate a
safe block from safe exclusive so that processors intending to
perform a Store are forced to handshake with the directory as
explained in section 3.4. Any subsequent GetS from a processor
which is not the owner leads to a transition to S RO (or shared
read-only) state. Since stores can silently happen in a MESI like
protocol if the cache block is in exclusive state at the processor side,
we could not leverage GetX coherence message in our state
machine. Instead we have introduced StatReq message which is
send by a processor intending to do a Store. Status-Req message in
UNTOUCHED state leads to a transition to P RW or private read

write state and the directory replies to the processor that the
classification is safe.
The state P S is a transient state in our state machine that is used

when a cache block transitions from safe to unsafe state ([P RO,
P RW, S RO] → S RW). When a Store is being performed on a
cache block which is in read only state (P RO or S RO) by a non-
owner processor or a Load or Store is being performed by non-
owner on cache block which is marked as P RW, it implies that this
cache block is shared amongst different processors. It is in this case
that the directory should inform the processors actively using the
cache block to drain their store buffers so as to hide any memory re-
orderings they have performed under the assumption that the cache
block was safe. The directory accomplishes this by sending a Status-
Downgrade message to the concerned processors (owner for P RO
and P RW and broadcast for S RO). The processors receiving the
downgrade message drain their store buffers and send a Status-Ack
message to the directory. On receiving all the Status-Ack messages,
the directory transitions to S RW or shared read write state and
replies to the original requestor that the classification is unsafe. Any
subsequent GetS or Status-Req will be replied by the Directory as
being unsafe.
While there is a cost associated with sending downgrades,

draining of store buffers, and collecting acknowledgements, the
important point to note is these transitions are rare, thus rendering
this cost is negligible. Furthermore, it is cheaper to get the
classification state information than to get coherence state
information as the directory is the single centralized place to query
classification information and thus armed with classification
information we can relax ordering constraints imposed by memory
model.

3.3 Cache Controller Protocol

To avoid always querying the directory for classification, we cache
the classification state on to private caches of processors. This leads
to addition of two bits per cache block as shown in Figure 6.

Unknown
Safe

StatResp=Safe

Safe
Exclusive

StatResp=SafeE

Unsafe

StatDwngrd / DrainSB, StatAck
StatResp=Safe

StatDwngrd /
DrainSB, StatAck

Store / Stall

Figure 4: Cache controller state machine

Figure 4 shows the cache controller state machine. Responses
from the Directory lead to transitions from one state to another.
Loads get hits in either safe/safe exclusive/unsafe state for
classification state. Stores on the other hand get hits only in
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Figure 5: An execution example

safe/unsafe state and have to send a Status-Req message when cache
block is in either unknown/safe exclusive state.

3.4 Processor Modifications
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Figure 6: Processor & Cache modifications

We assume in window speculation as proposed in [7] which is
used to optimize SC hardware. This lets stores to be retired from
the ROB and placed in the store buffer which have to be retired in
strict FIFO order. This helps SC hardware hide write miss latency to
some extent. Figure 6 shows processor hardware changes required to
support Reactive SC. We keep track of classification state in the ROB.
Reactive SC hardware employs an additional un-ordered, coalescing
store buffer for safe stores as in [12]. As pointed out in section
2.2 safe accesses can be reordered without violating SC and this
unordered store buffer allows us to retire stores out of order and to
coalesce stores that are to the same address.
The key invariant we need to ensure to guarantee correctness is

our design is the following: on a classification state transition (safe to
unsafe) any memory reorderings we have done should be committed
before letting the memory operation causing the state transition to
complete. We adhere to this invariant by making the following design
decisions:

• A load/store is not retired from ROB till its classification state is
known.

• On receipt of Status-Downgrade message, store buffers are
drained and lsq is snooped to mark matching loads/stores as
unsafe.

The above two design decisions, along with directory and cache
controller state machines ensure that directory is always aware of
loads/stores done by a processor to a cache block and thus has
correct classification information and draining store buffers on state
transitions ensures that any memory reorderings are committed
safely before a conflicting access (the operation causing the state
transition) is allowed to proceed.
The above design adds following features to baseline SC design:

STORE A (A: Unsafe)

STORE B (B: Safe)

STORE C (C: Safe)

STORE B

LOAD X (X: Safe)

LOAD Y (Y:Safe)

Figure 7: Program Listing for sample execution in Figure 5

• Store buffers with bypassing capabilities for safe loads.

• Store buffers with bypassing capabilities for unsafe loads (when
FIFO buffer is empty).

• Overlapping and coalescing store buffer for safe stores.

In Reactive SC we are then left with following ordering
constraints:

• Unsafe loads cause FIFO store buffer to drain.

• Unsafe stores retire out of store buffer in order.

In essence the orderings between unsafe accesses need to be
enforced as pointed out in section2.2.

4. Execution Example

Consider an execution example in figure 5. The order of instructions
is as follows:
We demonstrate three different executions: a SC execution, a

TSO execution and Reactive SC execution. TSO (total store order)
[8] memory model is used in SPARC implementations and appears
to match the memory consistency model of the widely used x86
architecture. TSO essentially relaxes Load to Store ordering and thus
a load behind a store in program order is allowed to complete while
the store is pending. The figure presents the state of the execution
when I4 is at the head of ROB ready to retire.
For the SC execution, Loads in ROB cannot retire till all pending

stores are retired from the store buffer. The two stores to location B
cannot be coalesced due to an interleaving store and Store C cannot
retire even though it is a hit as stores are retired in order.
For TSO execution, except that both loads can retire as soon as

they are at the head of ROB we still neither retire stores out of order
nor coalesce stores.
Finally, in Reactive SC we employ two different store buffers with

safe stores retiring to unordered coalescing store buffer and unsafe
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stores retiring to ordered non-coalescing store buffer. Thus Store C
can retire even though Store a is waiting on a cache miss and stores
to B can be coalesced. LOAD X can retire as it is a safe load without
requiring any store buffer drain. Since Load Y is unsafe we need
to wait for Store A to retire but not the other stores as we need to
preserve ordering only amongst unsafe accesses.
This example demonstrates that Reactive SC can relax more

orderings than TSO but is still limited with store buffer drains for
unsafe loads.

5. Experimental Setup

Processor core @ 2GHz

Fetch/Exec/Commit 4 instructions (max 2 loads or 1 store)
per cycle per core

FIFO Store Buffer 64 entry FIFO buffer

Unordered Store Buffer 8 entry unordered, coalescing store
buffer

L1 Cache 64 KB per-core, 4-way set associative,
64B block size, 1-cycle hit latency,
write-back, write up to 8 bytes per cycle

L2 Cache 512KB per-core, 4-way set associative,
64B block size, 10 cycle hit latency

Coherence MOESI directory protocol

Interconnection Torus-2D topology, 512-but link width,
8-cycle link latency

Memory 80-cycle DRAM lookup latency

Table 1: Processor Configuration

6. Experimental Results
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Figure 8: Execution cycle stack with commit stage stall cycles

Graph 1 shows normalized execution cycle stacks composed of
stall cycles in the commit stage due to various reasons. By relaxing
memory constraints on safe loads, Reactive SC is able to significantly
decrease the number stall cycles due to loads waiting for store buffer
drains. We were also able to achieve near TSO overall performance
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Figure 9: Memory access type classification observed in pintool
and simulations

numbers while maintaining the programmability and intuitiveness of
SC.
Our access type classification data obtained from FeS2

simulations was able to come reasonably close to the data observed
from our initial pintool analysis. Reactive SC is able to classify a
much greater number of safe accesses by using a finer granularity
than the page level implementation.
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Figure 10: Percent coalesced stores in upper half. Percent
saved/delayed loads in lower half

Sequential consistency has a large number of delayed loads due
to store buffer drains and TSO does not allow for any coalescing
of stores. Not only were we able to reduce the number of delayed
loads from SC, we were also able to coalesce a significant number
of stores. By doing this we are able to achieve better utilization of
our store buffer. Our experimental results were able to demonstrate
a substantial performance gain over both SC and the page level
implementation.

7. Conclusions and Future Work

Having a clean memory consistency model which follows the
intuition of the programmer is paramount to truly harnessing the
power of multiprocessors. There is a pressing need to make
multiprocessors more programmable to greater majority of
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programmers. We see our work as a positive step in this direction.
We have demonstrated that by dynamically classifying the memory
accesses into different classes we can not only reduce the
performance overhead of SC but also close the gap between SC and
the TSO model. Our simulation results prove that we are within
1.1%-6.5% of TSO performance for the tested benchmarks.
Currently, once a cache block is classified as unsafe it will always

be classified as unsafe until it is no longer present in directory. In
future work we intend to explore reverse classification transitions i.e.
unsafe to safe to see if certain applications can benefit from it.

8. Acknowledgements

We would like to thank Professor Thomas Wenisch and Joseph
Greathouse for having an excellently organized class which helped
bring out the best in us. Special thanks to Professor Wenisch for
helping us improve the robustness of our experimental
methodology. We also would like to thank Professor Satish
Narayanasamy for his helpful discussions and contributions
throughout the course of the project. Finally, we sincerely would
like to thank Abhayendra Singh for helping us with infrastructure
preparations and for his constructive feedback.

References

[1] S. Adve and K. Gharachorloo. Shared memory consistency models: a
tutorial. volume 29, pages 66 –76, dec 1996. doi: 10.1109/2.546611.

[2] S. V. Adve and M. D. Hill. Weak orderingȧ new definition. In
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